Robotics

P I‘Oj ECtS Second Edition

—-__—___-—ﬁ

ROS Robotics Projects
Second Edition

Build and control robots powered by the Robot Operating
System, machine learning, and virtual reality

Ramkumar Gandhinathan
Lentin Joseph

14095 TR (45 YR MA nJc1
TRUSG TZY IHOXS 1IN THY WIEN
8207 |

NN
-* 02339 o)

Packh

BIRMINGHAM - MUMBAI

ROS Robotics Projects
Second Edition

Cop_\'right © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored i
or by any means, without the prior written permission of Lhé publi ;n a retriey
embedded in critical articles or reviews. 1Sher, except

al system, or
n the case of

:a-nsrmned M 2 ¢
Tief quo:a:,_,_:'-‘ form

Every effort has been made in the preparation of this book t

) D ens
However, the information contained in this book is sold “’ithoe::l:::r?e aF@raq.
authors, nor Packt Publishing or its dealers and distributors, will be ha]ndt}‘, either
have been caused directly or indirectly by this book. cd Hable fo

eoi the information Presen
r all;’\re;s = imphedf\'e-mﬂ fi
Y damages cayq o ;‘l the
eged 1o

Packt Publishing has endeavored to provide trademark informatio
mentioned in this book by the appropriate use of capitals. Howeve: ;l;ocll:: gﬁﬁg‘ﬁenoo
3 g

of this information.

e o oo
ot antee the acquracy

Commissioning Editor: Vijin Boricha
Acquisition Editor: Meeta Rajani

Content Development Editor: Pratik Andrade
Senior Editor: Rahul Dsouza

Technical Editor: Dinesh Pawar

Copy Editor: Safis Editing

Project Coordinator: Anish Daniel
Proofreader: Safis Editing

Indexer: Rekha Nair
Production Designer: Alishon Mendonsa

First published: March 2017
Second edition: December 2019

Production reference: 1181219
Published by Packt Publishing Ltd.

Livery Place f
35 Livery Street s et pik 30!
Birmingham T {. Mo
B3 2PB, UK. . g b
ISBN 978-1-83864-932-6 i i .

|

www.packt .com

Table of Contents

Preface

Chapter 1: Getting Started with ROS
Technical requirements
Getting started with ROS
ROS distributions
Supported OSes
Robots and sensors supported by ROS
Why use ROS?
Fundamentals of ROS
The filesystem level
The computation graph level
The ROS community level
Communication in ROS
ROS client libraries
ROS tools
ROS Visualizer (RViz)
rqt_plot
rqt_graph
ROS simulators
Installing ROS Melodic on Ubuntu 18.04 LTS
Getting started with the installation
Configuring Ubuntu repositories
Setting up source.list
Setting up keys
Installing ROS Melodic
Initializing rosdep
Setting up the ROS environment
Getting rosinstall
Setting up ROS on VirtualBox
Introduction to Docker
Why Docker?
Installing Docker
Installing from the Ubuntu repository
Removing Docker
Installing from the Docker repository
Working with Docker
Setting up the ROS workspace
Opportunities for ROS in industries and research
Summary

-h
OO o~

Table of Contents

Chapter 2: Introduction to ROS-2 and Its Capabilities
Technical requirements
Getting started with ROS-2
ROS-2 distributions
Supported operating systems
Robots and sensors supported in ROS-2
Why ROS-2?
Fundamentals of ROS-2
What is DDS?
How is DDS implemented?
Computational graph
ROS-2 community level
Communication in ROS-2
Changes between ROS-1 and ROS-2
ROS-2 client libraries (RCL)
ROS-2 tools
Rviz2
Raqt
Installing ROS-2
Getting started with the installation
Setting up the system locale
Adding ROS-2 repositories
Installing development and ROS tools
Getting the ROS-2 source code
Installing dependencies using rosdep

Installing DDS implementations (optional)
Building code

Setting up ROS-1, ROS-2, or both environments
Running test nodes
Setting up the ROS-2 workspace
Writing ROS-2 nodes
ROS-1 example code
ROS-2 example code
Differences between ROS-1 and ROS-2 talker nodes
Bridging ROS-1 and ROS-2
Testing the ros1_bridge package
Summary

Chapter 3: Building an Industrial Mobile Manipulator
Technical requirements
Understanding available mobile manipulators
Applications of mobile manipulators

Getting started building mobile manipulators
Units and coordinate system
Gazebo and ROS assumptions

[ii]

(S RS NS IS NS NS RS
b O B O N = -

) N n

A A n U
st OO

0l

%8G8

Table of Contents

Building the robot base
Robot base prerequisites
Robot base specifications
Robot base kinematics
Software parameters
ROS message format
ROS controllers
Modeling the robot base
Initializing the workspace
Defining the links
Defining the joints
Simulating the robot base
Defining collisions
Defining actuators
Defining ROS_CONTROLLERS
Testing the robot base
Getting started building the robot arm
Robot arm prerequisites
Robot arm specifications
Robot arm kinematics
Software parameters
The ROS message format
ROS controllers
Modeling the robot arm
Initializing the workspace
Defining the links
Defining the joints
Simulating the robot arm
Defining collisions
Defining actuators
Defining ROS_CONTROLLERS
Testing the robot arm
Putting things together
Modeling the mobile manipulator
Simulating and testing the mobile manipulator

Summary

Chapter 4: Handling Complex Robot Tasks Using State Machines
Technical requirements
Introduction to ROS actions
The client-server concept
An actionlib example — robot arm client
An actionlib example - battery simulator server-client
Creating a package and a folder action inside it
Creating an action file that has the goal, result, and feedback
Modifying the package files and compiling the package
Defining a server
Defining a client

L o &
[UCTe I e

8

N R - -

O O oo

W0 OO
LRSRD 3

o8

[iii]

Table of Contents

Waiter robot analogy
Introduction to state machines
Introduction to SMACH
SMACH concepts
Outcome
User data
Preemption
3 Introspection
Getting started with SMACH examples
Installing and using SMACH-ROS
Simple example
Restaurant robot analogy
Summary

Chapter 5: Building an Industrial Application
Technical requirements
Application use case - robot home delivery
Setting up the environment in Gazebo
Making our robot base intelligent
Adding a laser sensor
Configuring the navigation stack
Mapping the environment
Localizing the robot base
Making our robot arm intelligent
Introduction to Moveit
Installing and configuring Moveit for our mobile robot
Installing Moveit
Configuring the Moveit setup assistant wizard
Loading the robot model
Setting up self-collisions
Setting up planning groups
Setting up arm poses
Setting up passive joints
Setting up ROS controllers
Finalizing the Moveitconfig package
Controlling the robot arm using Moveit
Simulating the application
Mapping and saving the environment
Choosing the points on the environment
Adding the points to our library
Completing the state machine
Improvements to the robot
Summary

Chapter 6: Multi-Robot Collaboration
Technical requirements

[iv]

Table of Contents

Understanding the swarm robotics application
Swarm robot classification
Multiple robot communication in ROS
Single roscore and common networks
Issues with a common network
Using groups/namespaces
Example — multi-robot spawn using groups/namespaces
Issues with using groups/namespaces
Introduction to the multimaster concept
Introduction to the multimaster_fkie package
Installing the multimaster_fkie package
Setting up the multimaster_fkie package
Setting up hostnames and IPs

Checking and enabling the multicast feature
Testing the setup

A multi-robot use case
Summary

Chapter 7: ROS on Embedded Platforms and Their Control
Technical requirements
Understanding embedded boards
Important concepts
How different are microcontrollers and microprocessors in robotics?
What matters while choosing such boards
Introduction to microcontroller boards
Arduino Mega
How to choose an Arduino board for your robot
STM32
ESP8266
ROS-supported embedded boards
OpenCR
Arbotix-Pro
Comparison table
Introduction to single-board computers
CPU boards
Tinkerboard S
BeagleBone Black
Raspberry Pi
Comparison table
GPU boards
Jetson TX2
Jetson Nano
Comparison table
Debian versus Ubuntu
Setting up ROS on Tinkerboard S
Prerequisites

180
181
183
183
185
186
187
190
191
192
193
193
194
195
195
197
199

201
202
202
204
205
205
206

206
207
208
209
210
210
211

211
212
213
213
214
215
216
217
217
218
218
219
220
220

[v]

Table of Contents

Installing the Tinkerboard Debian OS
Installing Armbian and ROS ‘
Installing using an available ROS image
Setting up ROS on BeagleBone Black
Prerequisites
Installing the Debian OS
Installing Ubuntu and ROS
Setting up ROS on Raspberry Pi 3/4
Prerequisites
Installing Raspbian and ROS
Installing Ubuntu and ROS
Setting up ROS on Jetson Nano
Controlling GPIOS from ROS
Tinkerboard S
BeagleBone Black
Raspberry Pi 3/4
Jetson Nano
Benchmarking embedded boards

Getting started with Alexa and connecting with ROS
Alexa skill-building requirements
Creating a skill

Summary

Chapter 8: Reinforcement Learning and Robotics
Technical requirements
Introduction to machine learning
Supervised learning
Unsupervised learning
Reinforcement learning
Understanding reinforcement learning
Explore versus exploit
Reinforcement learning formula
Reinforcement learning platforms
Reinforcement learning in robotics
MDP and the Bellman equation
Reinforcement learning algorithms
Taxi problem analogy
TD prediction
Algorithm explanation
TD control
Off-policy learning - the Q-learning algorithm
Algorithm explanation
On-policy learning — the SARSA algorithm
Algorithm explanation
Installing OpenAl Gym, NumPy, and pandas
Q-learning and SARSA in action

[vi]

220
222
224
225
225
225
2286
228
228
229
230
231
232
232
233
235
236
237
240
240
242
248

249
250
250
251

251

252
252
253
254
256
257
257
260
260
261
261
263
263
264
267
268
270
271

Table of Contents

Reinforcement learning in ROS
gym-gazebo
TurtleBot and its environment
Installing gym-gazebo and its dependencies
Testing the TurtleBot-2 environment
gym-gazebo2
MARA and its environment

Installing gym-gazebo2 and dependencies
Testing the MARA environment

Summary

Chapter 9: Deep Learning Using ROS and TensorFlow
Technical requirements
Introduction to deep learning and its applications
Deep learning for robotics
Deep learning libraries
Getting started with TensorFlow
Installing TensorFlow on Ubuntu 18.04 LTS
TensorFlow concepts
Graph
Session
Variables
Fetches
Feeds
Writing our first code in TensorFlow
Image recognition using ROS and TensorFlow
Prerequisites
The ROS image recognition node
Running the ROS image recognition node
Introducing to scikit-learn
Installing scikit-learn on Ubuntu 18.04 LTS
Introduction to SVM and its application in robotics
Implementing an SVM-ROS application

Summary

Chapter 10: Creating a Self-Driving Car Using ROS
Technical requirements
Getting started with self-driving cars
The history of autonomous vehicles
Levels of autonomy
Components of a typical self-driving car
GPS, IMU, and wheel encoders
Xsens MTi IMU
Camera
Ultrasonic sensors
LIDAR and RADAR
Velodyne HDL-64 LIDAR

272
272
274
276
277
280
280
281
283

284

285
286
286
287
288
289
289
292
292
293
293
294
294
295
298
298
299
301
304
304
305
305
308

309
310
310
310
312
313
313
314
314
314
315
315

[vii]

Table of Contents

SICK LMS 5xx/1xx and Hokuyo LIDAR
Continental ARS 300 radar (ARS)
The Delphi radar
Onboard computer
: Softwgre block diagram of self-driving cars)
Simulating and interfacing self-driving car sensors in ROS
Slmulat@ng the Velodyne LIDAR
In.terfac!ng Velodyne sensors with ROS
Slmulatlng a laser scanner
Explaining the simulation code
Interfacing laser scanners with ROS
Simulating stereo and mono cameras in Gazebo
Interfacing cameras with ROS
Simulating GPS in Gazebo
Interfacing GPS with ROS
Simulating IMU on Gazebo
Interfacing IMUs with ROS
Simulating an ultrasonic sensor in Gazebo
Low-cost LIDAR sensors
Sweep LIDAR
RPLIDAR

Simulating a self-driving car with sensors in Gazebo
Installing prerequisites
Visualizing robotic car sensor data
Moving a self-driving car in Gazebo
Running hector SLAM using a robotic car
Interfacing a DBW car with ROS
Installing packages
Visualizing the self-driving car and sensor data
Communicating with DBW from ROS
Introducing the Udacity open source self-driving car project
Open source self-driving car simulator from Udacity
MATLAB ADAS Toolbox

Summary

Chapter 11: Teleoperating Robots Using a VR Headset and Leap
Motion
Technical requirements
Getting started with a VR headset and Leap Motion
Designing and working on the project
Installing the Leap Motion SDK on Ubuntu 14.04.5
Visualizing the Leap Motion controller data
Playing with the Leap Motion Visualizer tool

Installing the ROS driver for the Leap Motion controller
Testing the Leap Motion ROS driver

Visualizing Leap Motion data in RViz

[viii]

316
317
317
317
318
319
320
322
323
326
327
328
331
331
333
333
336
336
338
338
340
341
341

345
347
347
347
349
350
351
354
355

357
358
359
362
363
364
365

367
368

370

Table of Contents

Creating a teleoperation node using the Leap Motion controller 372

Building a ROS-VR Android application

374

Working with the ROS-VR application and interfacing with Gazebo 375

TurtleBot simulation in VR
Installing the Turtlebot simulator
Working with TurtleBot in VR

Troubleshooting the ROS-VR application

379
380
381
382

Integrating the ROS-VR application and Leap Motion teleoperation 3a3

Summary

384

Chapter 12: Face Detection and Tracking Using ROS, OpenCV, and

Dynamixel Servos

Technical requirements

Overview of the project

Hardware and software prerequisites
Installing the usb_cam ROS package

Creating an ROS workspace for dependencies

Configuring a webcam on Ubuntu 18.04
Interfacing the webcam with ROS

Configuring a Dynamixel servo using RoboPlus
Setting up the USB-to-Dynamixel driver on the PC

Interfacing Dynamixel with ROS

Installing the ROS dynamixel_motor packages

Creating face tracker ROS packages

The interface between ROS and OpenCV
Working with the face-tracking ROS package

Understanding the face tracker code
Understanding CMakeLists.txt
The track.yaml file
Launch files
Running the face tracker node
The face_tracker_control package

The start_dynamixel launch file

The pan controller launch file
The pan controller configuration file
The servo parameters configuration file
The face tracker controller node
Creating CMakeLists.txt
Testing the face tracker control package
Bringing all of the nodes together

Fixing the bracket and setting up the circuit

The final run
Summary

Other Books You May Enjoy

385
386
386
387
388
388
388
390
392
394
398
399
399
401
402
405
409
411
411
412
413
414
415
415
416
416
418
419
420
421
421
422

423

[ix]

Preface

Robot Operating System (ROS) is one of the most popular robotics middleware and is
used by universities and industries for robot-specific applications. Ever since its
introduction, many robots have been introduced to the market and users have been able to
use them with ease within their applications. One of its main draws is its open source
nature. ROS does not need a user to reinvent the wheel; instead, standardizing robot
operations and applications is simple.

This book is an upgrade to the previous edition and introduces you to newer ROS
packages, interesting projects, and some added features. This book targets projects in the
latest (at the time of writing) ROS distribution—ROS Melodic Morenia with Ubuntu Bionic

version 18.04.

Here, you will understand how robots are used in industries and will learn the step-by-step
procedure of building heterogeneous robot solutions. Unlike the service call and action
features in ROS, you will be introduced to cooler techniques that let robots handle intricate
tasks in a smart way. This knowledge should pave the way to far more intelligent and self-
performing autonomous robots. Additionally, we will also introduce ROS-2, so you can
learn the differences between this version and the previous ROS version and find help in
choosing a specific middleware for your application.

Industries and research institutes are focusing primarily on the fields of computer vision
and natural language processing. While the previous edition of this book introduced you to
some simple vision applications such as object detection and face tracking, this edition will
introduce you to one of the most widely used smart speaker platforms on the market,
Amazon's Alexa, and how to control robots using it. In parallel, we will introduce new
hardware, such as Nvidia Jetson, Asus Tinker Board, and BeagleBone Black and explore

their capabilities with ROS.

While people may know how to control robots individually, one of the most common
problems faced by users in the ROS community is the use of multiple robots working in
synchronization, whether they are of the same type or not. This becomes complicated, as
robots may follow similar topic names and may possibly lead to confusion in a sequence of
operations. This book helps in highlighting the possible conflicts and suggests solutions.

R M wwed v
i oy g Wow ¥
¢ Wegtiing By R
N k“ - ‘“* S ~ » PN ™ A My !““
w Y wd LS G N R —— U Ve M SRR g ..
L e TN P -
\"‘\N'N ™G

D LI

" WA . g -
e DWW and WP AR EOR R s B3
THEY Berang e g ! : J
:\ v - SO\ '\Mb‘f'i“ wyd ee ""‘ A o T ‘o ¢
Ty Ve, aw &

= heny

R s M‘thﬂrmm«uu
The chapwer wil wmﬂuﬁdhnw

Preface

chapter 6, Multi-Robot Collaboration, teaches you how to communicate between multiple
robots of the same or different category and control them separately and together in
groups.

chapter 7, ROS on Embedded Platforms and Their Control, helps you understand the latest
embedded controller and processor boards, such as STM32-based controllers, Tinker Board,
Jetson Nano, and many more. We will also look at how to control their GPIOs via ROS and
control them via voice-based commands through Alexa.

Chapter 8, Reinforcement Learning and Robotics, introduces you to one of the most
commonly used learning techniques in robotics called reinforcement learning. In this
chapter, you will understand what reinforcement learning is and the math behind it using
examples. Additionally, we will discover how to incorporate this learning technique with
ROS by means of simple projects.

Chapter 9, Deep Learning Using ROS and TensorFlow, is a project made using a

trending technology in robotics. Using the TensorFlow library and ROS, we can implement
interesting deep learning applications. You can implement image recognition using deep
learning, and an application using SVM can be found in this chapter.

Chapter 10, Creating a Self-Driving Car Using ROS, is one of the more interesting projects in
this book. In this chapter, we will build a simulation of a self-driving car using ROS
and Gazebo.

Chapter 11, Teleoperating Robots Using a VR Headset and Leap Motion, shows you how to
control a robot's actions using a VR headset and Leap Motion sensor. You can play around
with VR, which is a trending technology these days.

chapter 12, Face Detection and Tracking Using ROS, OpenCV, and Dynamixel Servos, takes
you through a cool project that you can make with ROS and the OpenCV library. This
project basically creates a face tracker application in which your face will be tracked in such
a way that the camera will always point to your face. We will use intelligent servos such as
Dynamixel to rotate the robot on its axis.

To get the most out of this book

* You should have a powerful PC running a Linux distribution, preferably Ubuntu
18.04 LTS.

* You can use a laptop or desktop with a graphics card, and RAM of at least 4 to 8
GB is preferred. This is actually for running high-end simulations in Gazebo, as
well as for processing point clouds and computer vision.

[3]

coadiis

Preface

* You should have the sensors, actuators, and 1/O boards mentioned in the book
and should be able to connect them all to your PC. You also need Git installed t
clone the package files.

* If you are a Windows user, it will be good to download VirtualBox and set up
Ubuntu on it. However, do note that you may have issues while you try to
interface real hardware to ROS when working with VirtualBox.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

WSOV e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

* WinRAR/7-Zip for Windows
* Zipeg/iZip/UnRarX for Mac
¢ 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at ht tps://github.com/
PacktPublishing/ROS-Robotics-Projects-SecondEdition. In case there's an update to the

code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http: / /www. packtpub.com/sites/default/files/
downloads/978183864 9326_ColorImages.pdf.

[4]

Preface 1
l
|

Code in Action

Visit the following link to check out videos of the code being run:
http://bit.ly/34p6hL0

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Remove the CMakelists.txt file."

A block of code is set as follows:

def talker_main():
rospy.init_node('rosl_talker_node')
pub = rospy.Publisher('/chatter', String)
msg = String()
i=0

Any command-line input or output is written as follows:

$ sudo apt-get update
$ sudo rosdep init

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on Software & Updates and enable all of the Ubuntu repositories."

Warnings or important notes appear like this.

Tips and tricks appear like this.

[5]

Preface

Get in touch

Feedback from our readers is always welcome.

you have questions about any aspect of this book, mention the book

General feedback: If
yournumsageandenuﬂlusatcuszomercare@packtpub.com.

title in the subject of

y care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Errata: Although we have taken ever

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our

products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[6]

