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Preface

Robot Operating System (ROS) is one of the most popular robotics middleware and is
used by universities and industries for robot-specific applications. Ever since its
introduction, many robots have been introduced to the market and users have been able to
use them with ease within their applications. One of its main draws is its open source
nature. ROS does not need a user to reinvent the wheel; instead, standardizing robot
operations and applications is simple.

This book is an upgrade to the previous edition and introduces you to newer ROS
packages, interesting projects, and some added features. This book targets projects in the
latest (at the time of writing) ROS distribution—ROS Melodic Morenia with Ubuntu Bionic

version 18.04.

Here, you will understand how robots are used in industries and will learn the step-by-step
procedure of building heterogeneous robot solutions. Unlike the service call and action
features in ROS, you will be introduced to cooler techniques that let robots handle intricate
tasks in a smart way. This knowledge should pave the way to far more intelligent and self-
performing autonomous robots. Additionally, we will also introduce ROS-2, so you can
learn the differences between this version and the previous ROS version and find help in
choosing a specific middleware for your application.

Industries and research institutes are focusing primarily on the fields of computer vision
and natural language processing. While the previous edition of this book introduced you to
some simple vision applications such as object detection and face tracking, this edition will
introduce you to one of the most widely used smart speaker platforms on the market,
Amazon's Alexa, and how to control robots using it. In parallel, we will introduce new
hardware, such as Nvidia Jetson, Asus Tinker Board, and BeagleBone Black and explore

their capabilities with ROS.

While people may know how to control robots individually, one of the most common
problems faced by users in the ROS community is the use of multiple robots working in
synchronization, whether they are of the same type or not. This becomes complicated, as
robots may follow similar topic names and may possibly lead to confusion in a sequence of
operations. This book helps in highlighting the possible conflicts and suggests solutions.
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Preface

chapter 6, Multi-Robot Collaboration, teaches you how to communicate between multiple
robots of the same or different category and control them separately and together in
groups.

chapter 7, ROS on Embedded Platforms and Their Control, helps you understand the latest
embedded controller and processor boards, such as STM32-based controllers, Tinker Board,
Jetson Nano, and many more. We will also look at how to control their GPIOs via ROS and
control them via voice-based commands through Alexa.

Chapter 8, Reinforcement Learning and Robotics, introduces you to one of the most
commonly used learning techniques in robotics called reinforcement learning. In this
chapter, you will understand what reinforcement learning is and the math behind it using
examples. Additionally, we will discover how to incorporate this learning technique with
ROS by means of simple projects.

Chapter 9, Deep Learning Using ROS and TensorFlow, is a project made using a

trending technology in robotics. Using the TensorFlow library and ROS, we can implement
interesting deep learning applications. You can implement image recognition using deep
learning, and an application using SVM can be found in this chapter.

Chapter 10, Creating a Self-Driving Car Using ROS, is one of the more interesting projects in
this book. In this chapter, we will build a simulation of a self-driving car using ROS
and Gazebo.

Chapter 11, Teleoperating Robots Using a VR Headset and Leap Motion, shows you how to
control a robot's actions using a VR headset and Leap Motion sensor. You can play around
with VR, which is a trending technology these days.

chapter 12, Face Detection and Tracking Using ROS, OpenCV, and Dynamixel Servos, takes
you through a cool project that you can make with ROS and the OpenCV library. This
project basically creates a face tracker application in which your face will be tracked in such
a way that the camera will always point to your face. We will use intelligent servos such as
Dynamixel to rotate the robot on its axis.

To get the most out of this book

* You should have a powerful PC running a Linux distribution, preferably Ubuntu
18.04 LTS.

* You can use a laptop or desktop with a graphics card, and RAM of at least 4 to 8
GB is preferred. This is actually for running high-end simulations in Gazebo, as
well as for processing point clouds and computer vision.

[3]
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* You should have the sensors, actuators, and 1/O boards mentioned in the book
and should be able to connect them all to your PC. You also need Git installed t
clone the package files.

* If you are a Windows user, it will be good to download VirtualBox and set up
Ubuntu on it. However, do note that you may have issues while you try to
interface real hardware to ROS when working with VirtualBox.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

WSOV e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

* WinRAR/7-Zip for Windows
* Zipeg/iZip/UnRarX for Mac
¢ 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at ht tps://github.com/
PacktPublishing/ROS-Robotics-Projects-SecondEdition. In case there's an update to the

code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http: / /www. packtpub.com/sites/default/files/
downloads/978183864 9326_ColorImages.pdf.
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Code in Action

Visit the following link to check out videos of the code being run:
http://bit.ly/34p6hL0

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Remove the CMakelists.txt file."

A block of code is set as follows:

def talker_main():
rospy.init_node('rosl_talker_node')
pub = rospy.Publisher('/chatter', String)
msg = String()
i=0

Any command-line input or output is written as follows:

$ sudo apt-get update
$ sudo rosdep init

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on Software & Updates and enable all of the Ubuntu repositories."

Warnings or important notes appear like this.

Tips and tricks appear like this.

[5]
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Get in touch

Feedback from our readers is always welcome.

you have questions about any aspect of this book, mention the book

General feedback: If
yournumsageandenuﬂlusatcuszomercare@packtpub.com.

title in the subject of

y care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Errata: Although we have taken ever

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our

products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.
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